Skip to main content

Simple Pushbuttons UI Template for dm-script

 // Pushbutton UI template

//

// 2021/04/21

// Renfong


class UI_Handler : object {

number true, false

number UIObjectID

void SetUIObjectID(object self, number id) {

UIObjectID = id

};

UI_Handler(object self) {

true = 1; false = 0

result("Obect \"UI_Handler\" ["+self.ScriptObjectGetID()+"] constructed. \n")

};

~UI_Handler(object self) {

true = 1; false = 0

result("Obect\"UI_Handler\" ["+self.ScriptObjectGetID()+"] deconstructed. \n")

};

void btn1response(object self) {

OKdialog("This is a template")

};

};


class MainUI : UIFrame {

TagGroup btn1

object UI_Handler

number true, false, ver

MainUI(object self){

true = 1; false = 0; ver=0.1;

UI_Handler = alloc(UI_Handler)

result("Obect \"MainUI\" ["+self.ScriptObjectGetID()+"] constructed. \n")

};

~MainUI(object self){

result("Obect \"MainUI\" ["+self.ScriptObjectGetID()+"] deconstructed. \n")

};

void btn1response (object self) {

UI_Handler.btn1response()

};

TagGroup ButtonGroup1(object self) {

TagGroup box_items

TagGroup box = DLGCreateBox("Group 1", box_items)

box.DLGExternalPadding(5,5)

box.DLGInternalPadding(25,10)

btn1 = DLGCreatePushButton("btn1 name", "btn1response")

DLGEnabled(btn1, 1)

DLGIdentifier(btn1, "btn1").DLGFill("X").DLGExternalPadding(0,-1)

box_items.DLGAddElement(btn1)

return box

};

void CreateDialog(object self){

TagGroup position

position = DLGBuildPositionFromApplication()

position.TagGroupSetTagAsTagGroup("Width", DLGBuildAutoSize())

position.TagGroupSetTagAsTagGroup("Height", DLGBuildAutoSize())

position.TagGroupSetTagAsTagGroup("X", DLGBuildRelativePosition("Inside", 1))

position.TagGroupSetTagAsTagGroup("Y", DLGBuildRelativePosition("Inside", 1))

TagGroup dialog_items

TagGroup dialog = DLGCreateDialog("TemplateUI", dialog_items).DLGPosition(position)

dialog_items.DLGAddElement(self.ButtonGroup1())

object dialog_frame = self.init(dialog)

dialog_frame.Display("UIFrame_v"+ver)

UI_Handler.SetUIObjectID(self.ScriptObjectGetID())

};

}


{

alloc(MainUI).CreateDialog()

}

Comments

Popular posts from this blog

k-means clustering

In order to clustering data to reduce the noise, we can use the simple k-means clustering algorithm. The idea of k-means is quite simple. Here is the step of the k-means algorithm. 1. Randomly pick samples (depending on how many groups we want to cluster) as the references. 2. Compute the distance between each data point and references. 3. Comparing the distance to each reference, grouping the data points from the shortest distance. 4. Compute the centroid of each group as the new reference. 5. Repeat 2-4, until the centroids are the same with the previous result. Here is the Matlab code: ======================================= % An example for k-means clustering % % Renfong 2018/12/19 % % create test data % There are 3 types of sigal % 1-20, 36-70, 91-100 are the group 1 % 21-35 are group 2 % 71-90 are group 3 xx=0:1:1024; cen=[120, 360, 780]; amp=[100, 60, 55]; sig=[50, 10, 30]; % peak 1+3 for i=1:20     sp(i,:)=amp(1)*exp((-...

MLLS in matlab

MLLS stands for  multiple linear least squares fitting, which is the common strategy for the solving EELS edge overlapping and which is also built-in the GMS software. The target spectrum Y and the reference spectrum X Y = A * X Assuming Y is 1*256 matrix and we have three reference spectrums, ie, X is 3*256 matrix. So A is 1*3 matrix. The target is to solve A. If Y and X are n*n matrices, we can use the simple formula Y * inv(X) = A * X * inv(X), ie., A = Y * inv(X). However, Y and X are not n*n  matrices, it is necessary to have some trick to solve it. We can multiply the transpose matrix to produce n*n matrix. Y * X' = A * X * X'  (ps X' means the transpose matrix of X) so A = Y * X' * inv(X * X') Here is the Matlab code: =========  % create target spectrum x=0:256; c=[90,120,155]; sig=[5,10,8]; int=[5,10,8]; xn=zeros(size(x)); ref=zeros(length(c),length(x)); factor=rand(size(c))'; for i=1:length(c)     xn=xn+int(i)*ex...

Drift correction in Matlab

In order to improve S/N ratio, microscopist uses several short acquisition time images, and then sum them up. So the drift correction is very important. Here is the demo of how to use Matlab do drift correction. In the first, load an image, and using circshift function to shift the object in the image. Then use fft cross correlation to compute the moving distance. Finally, shift the object to the origial position. Here is the testing code: == % Demo of drift correction % 2018/11/15  by Renfong im1= imread('cameraman.tif');    % reference image [sy,sx]=size(im1); % shift the object im2=circshift(im1,[20,10]);    % the object moved down 20 pixels and moved right 10 pixels. figure(1); subplot(121);imshow(im1); subplot(122);imshow(im2); % Using fft cross correlations to detect the moving distance[1] fftim1=fft2(im1); fftim2=fft2(im2); cc=fftshift(ifft2(fftim1.*conj(fftim2))); [shiftY,shiftX]=find(cc==max(cc(:))...