Skip to main content

Simple Pushbuttons UI Template for dm-script

 // Pushbutton UI template

//

// 2021/04/21

// Renfong


class UI_Handler : object {

number true, false

number UIObjectID

void SetUIObjectID(object self, number id) {

UIObjectID = id

};

UI_Handler(object self) {

true = 1; false = 0

result("Obect \"UI_Handler\" ["+self.ScriptObjectGetID()+"] constructed. \n")

};

~UI_Handler(object self) {

true = 1; false = 0

result("Obect\"UI_Handler\" ["+self.ScriptObjectGetID()+"] deconstructed. \n")

};

void btn1response(object self) {

OKdialog("This is a template")

};

};


class MainUI : UIFrame {

TagGroup btn1

object UI_Handler

number true, false, ver

MainUI(object self){

true = 1; false = 0; ver=0.1;

UI_Handler = alloc(UI_Handler)

result("Obect \"MainUI\" ["+self.ScriptObjectGetID()+"] constructed. \n")

};

~MainUI(object self){

result("Obect \"MainUI\" ["+self.ScriptObjectGetID()+"] deconstructed. \n")

};

void btn1response (object self) {

UI_Handler.btn1response()

};

TagGroup ButtonGroup1(object self) {

TagGroup box_items

TagGroup box = DLGCreateBox("Group 1", box_items)

box.DLGExternalPadding(5,5)

box.DLGInternalPadding(25,10)

btn1 = DLGCreatePushButton("btn1 name", "btn1response")

DLGEnabled(btn1, 1)

DLGIdentifier(btn1, "btn1").DLGFill("X").DLGExternalPadding(0,-1)

box_items.DLGAddElement(btn1)

return box

};

void CreateDialog(object self){

TagGroup position

position = DLGBuildPositionFromApplication()

position.TagGroupSetTagAsTagGroup("Width", DLGBuildAutoSize())

position.TagGroupSetTagAsTagGroup("Height", DLGBuildAutoSize())

position.TagGroupSetTagAsTagGroup("X", DLGBuildRelativePosition("Inside", 1))

position.TagGroupSetTagAsTagGroup("Y", DLGBuildRelativePosition("Inside", 1))

TagGroup dialog_items

TagGroup dialog = DLGCreateDialog("TemplateUI", dialog_items).DLGPosition(position)

dialog_items.DLGAddElement(self.ButtonGroup1())

object dialog_frame = self.init(dialog)

dialog_frame.Display("UIFrame_v"+ver)

UI_Handler.SetUIObjectID(self.ScriptObjectGetID())

};

}


{

alloc(MainUI).CreateDialog()

}

Comments

Popular posts from this blog

Top hat filter

The top_hat filter can be used to detect the relatively small edges/peaks superimposed on large background signals. The concept came from the EELS workshop during IMC19. Thanks to Prof. Nestor J. Zaluzec. -- // Using Top_hat digital filter to detect the  relatively small edges  //    superimposed on large background signals. // // ref: Ultramicroscopy 18 (1985) 185-190  //      Digital Filters  for Application to Data Analysis in EELS //      by Nestor J. ZALUZEC // Parameters: // win_s: signal window (default:3) // win_b: background window (default:3) //  a_s : amplitude of signal (fixed value) //  a_b : amplitude of background  (fixed value) // Renfong 2018/10/11 // Main function image Top_Hat_Filter(image img, number win_s, number win_b) { // read image string fname=img.GetName() number sx,sy img.getsize(sx,sy) // filter image img2 := imageclone(img)*0 //the area between...

HyperSpy - read the calibration information in a dm3/dm4 file

Some example of dm3 file reading by using Python HyperSpy package, which can read the detail information of the dm file. -- # import packages import numpy as np import hyperspy.api as hs # load file sp=hs.load('sp.dm3') # Read the axis information      # Print all the calibration detail print(sp.axes_manager) ''' <Axes manager, axes: (272|2042)>             Name |   size |  index |  offset |   scale |  units  ================ | ======= | ====== | ======= | ======= | ======                     x |    272 |      0 |       -0 |  0.0025 |     µm   --------------- |  ------ | ----- |  ------ | ------- | ------    Energy loss |  2042 |         | 3.2e+02 |       1 |     eV...

MLLS in matlab

MLLS stands for  multiple linear least squares fitting, which is the common strategy for the solving EELS edge overlapping and which is also built-in the GMS software. The target spectrum Y and the reference spectrum X Y = A * X Assuming Y is 1*256 matrix and we have three reference spectrums, ie, X is 3*256 matrix. So A is 1*3 matrix. The target is to solve A. If Y and X are n*n matrices, we can use the simple formula Y * inv(X) = A * X * inv(X), ie., A = Y * inv(X). However, Y and X are not n*n  matrices, it is necessary to have some trick to solve it. We can multiply the transpose matrix to produce n*n matrix. Y * X' = A * X * X'  (ps X' means the transpose matrix of X) so A = Y * X' * inv(X * X') Here is the Matlab code: =========  % create target spectrum x=0:256; c=[90,120,155]; sig=[5,10,8]; int=[5,10,8]; xn=zeros(size(x)); ref=zeros(length(c),length(x)); factor=rand(size(c))'; for i=1:length(c)     xn=xn+int(i)*ex...