Skip to main content

CDF of Gaussian distribution

The cumulative distribution function (CDF) of Gaussian distribution with standard deviation (sig) and mean (cen) in python

Ref: 

https://www.mathworks.com/help/matlab/ref/erf.html

https://introcs.cs.princeton.edu/java/11gaussian/


===============================================

python code:

================================================

from scipy import special

import matplotlib.pyplot as plt

import numpy as np


def erfValue(x, cen, sig):

    #           1                 x - cen

    # erf(x) = --- (1 + erf(-----------------))

    #           2             sqrt(2) * sig

    return 0.5*(1+special.erf((x-cen)/(np.sqrt(2)*sig)))


def erfcValue(x, cen, sig):

    return 1-erfValue(x, cen, sig)


cen = 9.54

sig=2

xx = np.arange(0,20,step=.01)

erf = erfValue(xx, cen, sig)

plt.figure()

plt.plot(xx,erf,'r')


x1 = cen

y1 = erfValue(x1, cen, sig)

plt.plot(x1, y1, 'k.')

plt.text(x1, y1, "(%.2f, %.2f)"%(x1,y1))


x2 = cen+sig

y2 = erfValue(x2, cen, sig)

plt.plot(x2, y2, 'k.')

plt.text(x2, y2, "(%.2f, %.2f)"%(x2,y2))


x3 = cen-sig

y3 = erfValue(x3, cen, sig)

plt.plot(x3, y3, 'k.')

plt.text(x3, y3, "(%.2f, %.2f)"%(x3,y3))


plt.title("erf curve")

plt.show()


erfc = erfcValue(xx, cen, sig)

plt.figure()

plt.plot(xx,erfc,'b')


x1 = cen

y1 = erfcValue(x1, cen, sig)

plt.plot(x1, y1, 'k.')

plt.text(x1, y1, "(%.2f, %.2f)"%(x1,y1))


x2 = cen+sig

y2 = erfcValue(x2, cen, sig)

plt.plot(x2, y2, 'k.')

plt.text(x2, y2, "(%.2f, %.2f)"%(x2,y2))


x3 = cen-sig

y3 = erfcValue(x3, cen, sig)

plt.plot(x3, y3, 'k.')

plt.text(x3, y3, "(%.2f, %.2f)"%(x3,y3))


plt.title("erfc curve")

plt.show()


================================================




Comments

Popular posts from this blog

Top hat filter

The top_hat filter can be used to detect the relatively small edges/peaks superimposed on large background signals. The concept came from the EELS workshop during IMC19. Thanks to Prof. Nestor J. Zaluzec. -- // Using Top_hat digital filter to detect the  relatively small edges  //    superimposed on large background signals. // // ref: Ultramicroscopy 18 (1985) 185-190  //      Digital Filters  for Application to Data Analysis in EELS //      by Nestor J. ZALUZEC // Parameters: // win_s: signal window (default:3) // win_b: background window (default:3) //  a_s : amplitude of signal (fixed value) //  a_b : amplitude of background  (fixed value) // Renfong 2018/10/11 // Main function image Top_Hat_Filter(image img, number win_s, number win_b) { // read image string fname=img.GetName() number sx,sy img.getsize(sx,sy) // filter image img2 := imageclone(img)*0 //the area between...

HyperSpy - read the calibration information in a dm3/dm4 file

Some example of dm3 file reading by using Python HyperSpy package, which can read the detail information of the dm file. -- # import packages import numpy as np import hyperspy.api as hs # load file sp=hs.load('sp.dm3') # Read the axis information      # Print all the calibration detail print(sp.axes_manager) ''' <Axes manager, axes: (272|2042)>             Name |   size |  index |  offset |   scale |  units  ================ | ======= | ====== | ======= | ======= | ======                     x |    272 |      0 |       -0 |  0.0025 |     µm   --------------- |  ------ | ----- |  ------ | ------- | ------    Energy loss |  2042 |         | 3.2e+02 |       1 |     eV...

MLLS in matlab

MLLS stands for  multiple linear least squares fitting, which is the common strategy for the solving EELS edge overlapping and which is also built-in the GMS software. The target spectrum Y and the reference spectrum X Y = A * X Assuming Y is 1*256 matrix and we have three reference spectrums, ie, X is 3*256 matrix. So A is 1*3 matrix. The target is to solve A. If Y and X are n*n matrices, we can use the simple formula Y * inv(X) = A * X * inv(X), ie., A = Y * inv(X). However, Y and X are not n*n  matrices, it is necessary to have some trick to solve it. We can multiply the transpose matrix to produce n*n matrix. Y * X' = A * X * X'  (ps X' means the transpose matrix of X) so A = Y * X' * inv(X * X') Here is the Matlab code: =========  % create target spectrum x=0:256; c=[90,120,155]; sig=[5,10,8]; int=[5,10,8]; xn=zeros(size(x)); ref=zeros(length(c),length(x)); factor=rand(size(c))'; for i=1:length(c)     xn=xn+int(i)*ex...