Skip to main content

Image binng in matlab

Here are my own image binning codes. The first one was built on 2015/3/2. And the second one was written on 2018/11/5.

I think I have a big improvement. Ha~

====

function [ox,oy]=binning(x,y,nbins)

% This function is used to bin data to average

% x: x-axis data
% y: y-axis data
% nbins: binning factor
%
% 2015/03/02 
% Renfong

m=max(size(x));
n0=fix(m/nbins);
n1=mod(m,nbins);

if n1==0
ox=zeros(n0,1);
oy=zeros(n0,1);
for ii=1:n0
for jj=1:nbins
ox(ii)=ox(ii)+x((ii-1)*nbins+jj);
oy(ii)=oy(ii)+y((ii-1)*nbins+jj);
end
ox(ii)=ox(ii);
oy(ii)=oy(ii);
end
else
ox=zeros(n0+1,1);
oy=zeros(n0+1,1);
for ii=1:n0
for jj=1:nbins
ox(ii)=ox(ii)+x((ii-1)*nbins+jj);
oy(ii)=oy(ii)+y((ii-1)*nbins+jj);
end
ox(ii)=ox(ii);
oy(ii)=oy(ii);
end
for ii=1:n1
ox(n0+1)=ox(n0+1)+x(n0*nbins+ii);
oy(n0+1)=oy(n0+1)+y(n0*nbins+ii);
end
ox(n0+1)=ox(n0+1)*nbins/n1;
oy(n0+1)=oy(n0+1)*nbins/n1;
end

====

function out=xy_bins(img,nbins)
%
% xy_bins is to bin along x and y directions
% z maintains to its origin dimension.
%
% img: image stack, must be 2D or 3D dataset
% nbins: number of bins, the nbins must be the factor of img x-y dimension
%
% 2018/11/05
% Renfong

[sy,sx,sz]=size(img);
if mod(sy,nbins)~=0
    error('The dimension does match!');
    return;
end
out=zeros(sy/nbins,sx/nbins,sz);
for i=1:sz
    for j=1:nbins
        for k=1:nbins
            out(:,:,i)=out(:,:,i)+img(j:nbins:sy,k:nbins:sx,i);
        end
    end
end

out=out/(nbins)^2;

Comments

Popular posts from this blog

Top hat filter

The top_hat filter can be used to detect the relatively small edges/peaks superimposed on large background signals. The concept came from the EELS workshop during IMC19. Thanks to Prof. Nestor J. Zaluzec. -- // Using Top_hat digital filter to detect the  relatively small edges  //    superimposed on large background signals. // // ref: Ultramicroscopy 18 (1985) 185-190  //      Digital Filters  for Application to Data Analysis in EELS //      by Nestor J. ZALUZEC // Parameters: // win_s: signal window (default:3) // win_b: background window (default:3) //  a_s : amplitude of signal (fixed value) //  a_b : amplitude of background  (fixed value) // Renfong 2018/10/11 // Main function image Top_Hat_Filter(image img, number win_s, number win_b) { // read image string fname=img.GetName() number sx,sy img.getsize(sx,sy) // filter image img2 := imageclone(img)*0 //the area between...

HyperSpy - read the calibration information in a dm3/dm4 file

Some example of dm3 file reading by using Python HyperSpy package, which can read the detail information of the dm file. -- # import packages import numpy as np import hyperspy.api as hs # load file sp=hs.load('sp.dm3') # Read the axis information      # Print all the calibration detail print(sp.axes_manager) ''' <Axes manager, axes: (272|2042)>             Name |   size |  index |  offset |   scale |  units  ================ | ======= | ====== | ======= | ======= | ======                     x |    272 |      0 |       -0 |  0.0025 |     µm   --------------- |  ------ | ----- |  ------ | ------- | ------    Energy loss |  2042 |         | 3.2e+02 |       1 |     eV...

MLLS in matlab

MLLS stands for  multiple linear least squares fitting, which is the common strategy for the solving EELS edge overlapping and which is also built-in the GMS software. The target spectrum Y and the reference spectrum X Y = A * X Assuming Y is 1*256 matrix and we have three reference spectrums, ie, X is 3*256 matrix. So A is 1*3 matrix. The target is to solve A. If Y and X are n*n matrices, we can use the simple formula Y * inv(X) = A * X * inv(X), ie., A = Y * inv(X). However, Y and X are not n*n  matrices, it is necessary to have some trick to solve it. We can multiply the transpose matrix to produce n*n matrix. Y * X' = A * X * X'  (ps X' means the transpose matrix of X) so A = Y * X' * inv(X * X') Here is the Matlab code: =========  % create target spectrum x=0:256; c=[90,120,155]; sig=[5,10,8]; int=[5,10,8]; xn=zeros(size(x)); ref=zeros(length(c),length(x)); factor=rand(size(c))'; for i=1:length(c)     xn=xn+int(i)*ex...